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Problem Set Five: Randomized Data Structures
This last problem set explores randomized data structures and the mathematical techniques useful in
analyzing them. By the time you've finished this problem set, you'll have a much deeper appreciation
for just how clever and powerful these data structures can be!

Due Thursday, May 25th at 12:00 noon Pacific
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Problem One: Cuckoo Hashing
Here are two details about the implementation of vanilla cuckoo hashing (two hash functions, one item
per slot) that might seem challenging to handle in practice:

1. We need two hash functions h₁(x) and h₂(x) such that h₁(x) ≠ h₂(x) for any key x. It seems like it
would be hard to get hash functions with these properties.

2. When displacing a key x from its home, we need to move it to either position h₁(x) or h₂(x) de-
pending on which of the two positions it was previously in. This seems like it requires us to com-
pute h₁(x) and h₂(x) when doing the displacement, though one of those calculations isn’t needed.

Turns out, there’s a really nice way to address both concerns.
Let’s begin by assuming that we have a table with m elements, where m is a perfect power of two. We’ll
assume we have access to two families of 2-independent hash functions: ℋm, which maps from the uni-
verse of keys to the set {0, 1, 2, …, m – 1}, and ℋm-1, which maps from the universe of keys to the set
{1, 2, 3, …, m – 1}. We’ll then sample a hash function h₁ from ℋm and, independently, a second hash
function hΔ from ℋm-1. We’ll then define our second hash function h₂ to be

h₂(x) = h₁(x) ⊕ hΔ(x),
where ⊕ denotes the bitwise XOR operation.

i. Prove that h₁(x) ≠ h₂(x) for any key x.
This choice of hash function makes it easy to displace an element from its current position to the position
given by its other hash. Assuming we displace key x from position i in the table, we simply move key x to
position i ⊕ hΔ(x).

ii. Prove that this procedure always moves key x from h₁(x) to h₂(x) or vice-versa.
Now, let ℋcuckoo denote the family of pairs of hash functions (h₁, h₂) produced this way. This is a family
of hash functions over the set E = {(i, j) | i, j ∈ [m] and i ≠ j}.

iii. Prove that ℋcuckoo is 2-independent. We’re expecting a formal proof that references the definition
of 2-independence.

As a note, for cuckoo hashing to work properly, a stronger degree of independence is required than what
you proved here. Nonetheless, we figured it would be a good exercise to work through these details so you
could appreciate the details! You often see this idea employed in practice.

Problem Two: Final Details on Count Sketches
In our analysis of count sketches from lecture, we made the following simplification when determining the
variance of our estimate:

Var [∑
j≠i

a j s (x i) s( x j) X j ] = ∑
j≠i

Var[ a j s (x i )s (x j) X j]

In this expression, we’ve fixed some value for an index i, and are summing over all the other indices.
In general, the variance of a sum of random variables is not the same as the sum of their variances. That
only works in the case where all those random variables are pairwise uncorrelated, as you saw on Prob-
lem Set Zero.
Prove that for any indices j ≠ k (where j ≠ i and k ≠ i) that aⱼ s(xᵢ) s(xⱼ) Xⱼ and ak s(xᵢ) s(xk) Xk are pairwise
uncorrelated random variables, under the assumption that both s and h are drawn uniformly and indepen-
dently from separate 2-independent families of hash functions.  Refer back to the slides on the count
sketch for the definitions of the relevant terms here. Remember that aj and ak are not random variables.
Two random variables X and Y are uncorrelated if E[XY] = E[X]E[Y].
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Problem Three: Cardinality Estimation
In this problem, you’ll design and analyze a cardinality estimator that works on a different principle than
the HyperLogLog estimator we saw in lecture. For the purposes of this problem, let’s assume our ele-
ments are drawn from the set 𝒰 and that the true cardinality of the set seen is n.
Here’s an initial data structure for cardinality estimation. Choose a hash function h uniformly at random
from a family of 2-independent hash functions ℋ, where every function in ℋ maps 𝒰 to the open inter -
val of real numbers (0, 1). Hashing to a uniformly-random real number poses some theoretical challenges;
in practice, you’d use a slightly different strategy. For the purposes of this problem, assume this is possi-
ble.
Our data structure works by hashing the elements it sees using h and doing some internal bookkeeping to
keep track of the kth-smallest hash code out of all the hash codes seen so far, ignoring duplicates. The
fact that we ignore duplicate hash codes is important; we’d like it to be the case that if we call see(x) mul-
tiple times, it has the same effect as just calling see(x) a single time. (The fancy term for this is that the
see operation is  idempotent.) We’ll implement estimate() by returning the value n̂ = k

hk
, where hₖ de-

notes the kth smallest hash code seen.
i. Explain, intuitively, why n̂ is a somewhat reasonable guess for the actual number of elements.

Let ε ∈ (0, 1) be some accuracy parameter that’s provided to us.
ii. Prove that Pr [ n̂ ≥ (1+ε)n ] ≤ 2

k ε2 . This shows that by tuning k, we can make it unlikely that we
overestimate the true value of n.
Use the techniques we covered in class: use indicator variables and some sort of concentration in-
equality. What has to happen for the estimate n̂ to be too large? As a reminder, your hash function
is only assumed to be 2-independent, so you can’t assume it behaves like a truly random function
and can only use properties of 2-independent hash functions.
As a hint,  n̂ is  not an unbiased estimator and computing E[n̂] is extremely challenging – as in,
we’re not sure how to do it! See if you can solve this problem without computing E[n̂].

Using a proof analogous to the one you did in part (ii) of this problem, we can also prove that
Pr [ n̂ ≤ (1−ε)n] ≤ 2

k ε2 .

The proof is very similar to the one you did in part (ii), so we won’t ask you to write this one up. How-
ever, these two bounds collectively imply that by tuning k, you can make it fairly likely that you get an es-
timate within ±εn of the true value! All that’s left to do now is to tune our confidence in our answer.

iii. Using the above data structure as a starting point, design a cardinality estimator with tunable pa-
rameters ε ∈ (0, 1) and δ ∈ (0, 1) such that
• see(x) takes time O(poly(ε-1, log δ-1)), where  poly(x,  y) denotes “something bounded from

above by a polynomial in x and y,” such as x3y + y2 log x;
• estimate() takes time O(poly(log δ-1)), and if C denotes the estimate returned this way, then

Pr[ |C – n| > εn ] < δ; and
• the total space usage is O(poly(ε-1, log δ-1)).

You’ve just  built  a tunable cardinality estimator that  just  needs 2-independent hash functions.  Nicely
done!
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Problem Four: Cuckoo Phase Transitions
In lecture, we discussed vanilla cuckoo hashing (one table of  m elements with two hash functions) and
saw how the performance degraded when the load factor approached 50%. We then discussed two strate-
gies for improving the space usage:

• Blocked cuckoo hashing: Pick a block size b ≥ 1 and make a table of m / b slots, where each slot
can hold up to b items.

• d-ary cuckoo hashing: Use d ≥ 2 hash functions to select table locations.
A (b, d) cuckoo hash table is one that combines these two strategies. Specifically, the table will be subdi-
vided into m / b blocks of size b, and we’ll have d ≥ 2 hash functions indicating where an item may be
placed. So, for example, vanilla cuckoo hashing is (1, 2) cuckoo hashing, (1, 3) cuckoo hashing is 3-ary
cuckoo hashing, and (2, 2) cuckoo hashing is blocked cuckoo hashing with b = 2.
Your task is to determine, empirically, what the maximum load factor is for (b, d) cuckoo hash tables for
different choices of b and d. Specifically, write simulation code in your Programming Language of Choice
to fill in the following table with the maximum value of α for which, empirically, the probability that αm
items can be inserted into a (b, d) cuckoo hash table is at least 99%.

d = 2 d = 3 d = 4 d = 5 d = 6
b = 1
b = 2
b = 3
b = 4
b = 5

You can code this up however you’d like, provided that the following are true:
• Your implementation of cuckoo hashing is your own – that is, you’re not using an existing library

that implements cuckoo hashing.
• Your code obeys our normal coding conventions – it’s well-commented, easy to read, etc.
• Your code must be able to run in terminal mode on the myth machines.
• We should be able to execute your code by running this exact command:

make && ./generate-table

• Your code outputs the final table of results to stdout in some format that a well-meaning member
of the course staff could interpret without too much difficulty.

• It takes less than thirty minutes to generate the table.
There are many design decisions you’ll need to consider here when running these experiments, and we’re
going to leave them to you to decide. You should document your design decisions in the file DESIGN.txt
that you’ll submit alongside the rest of your submission. In particular, please address the following:

• What value of m did you pick? Why?
• How did you come up with the hash codes for the items in the table? Did you generate them ran-

domly, or did you use a known hash function (e.g. Jenkins, shift-add-XOR, etc.)? Why?
• What procedure did you use to displace items from the table? How did you determine that an in-

sertion failed? Why?
Check  /usr/class/cs166/assignments/a5 for some sample  Makefiles you can use, along with a
DESIGN.txt doc you can use as a starting point.


